Electricity is generated at power plants, which can use a variety of fuels such as coal, natural gas, nuclear, hydro, wind, and solar energy to generate electricity. Once generated, the electricity is transmitted over long distances through a network of high-voltage power lines, known as the power grid.
The power grid is managed by utility companies, which distribute the electricity to homes and businesses through a system of lower-voltage power lines and transformers.
When the electricity reaches your neighborhood, it is delivered to a distribution transformer that reduces the voltage to a level that can be safely used in homes and businesses. From there, the electricity is distributed through underground or overhead power lines to individual homes and businesses, where it enters the building through a service drop or service lateral.
Inside the building, the electricity passes through a meter that measures the amount of electricity used, and then enters a circuit breaker panel or fuse box, where it is distributed to various circuits throughout the building. These circuits supply power to outlets, appliances, lighting, and other electrical devices in the home.
If you are like me that lives in an area where there is epileptic power supply from the national grid then you most certainly have an electric generator set.
Electric generating sets are very costly these days, most people cannot afford them but if you can afford one then you have to take good care of it so that it can last much longer for you.
Whether you are using your generator for business or at home, giving it good maintenance will make you get the very best out of it. Maintenance of your electric generating set starts even from the time you go to purchase it. Why did I say this, you must know your energy needs, before planning to purchase a generator. My safe rule is this; buy a generating set that is twice the capacity of your energy needs. For instance, if the energy needs of all your appliances is 2000 watts, then buy a generator of around 4000 watt capacity. Don’t go and buy a generator of a 1000 watt capacity because no amount of maintenance will make that generator last because its capacity is too small for the load you are subjecting it to.
Should you purchase a new or fairly used generator
In the course of my life I have purchased several electric generating sets both new and fairly used and my verdict is this:
Don’t buy fairly used generating sets, it won’t pay you in the long run. Most of these type of generators have lost their original quality value and they do have a problem that is why the owner decided to sell it. So by buying it, you just inherited the problem. You will most likely end up making several repairs on the generator and at the end of the day it becomes a burden. It’s not worth it. Just save up and buy a brand new generator, that’s the best, whether you are using it for business or for home use.
How to buy original electric generator
If you want to buy a good high-quality generating set then go for one that has a very original branding. The branding, the logo of the manufacturers must be engraved into the body parts of the generating sets not just pasted only. Sometimes it pays if you do a little research before you go and purchase. Ask people who have generator sets or those that repair them about how you can identify an original generator in the market. Read the information that is written on the body and packaging, it can give you useful clues as per the originality and capacity of the generator. Don’t always believe what the dealer tells you.
How to maintain your generator
All brand new generators come with a service manual that shows you when to service your generator and what parts you should clean, service or change. There are some forms of generator service you can do yourself and there are others you will have to contact a qualified technician.
Generator service you can do yourself
If you are using the gasoline generator then you can service these 3 things yourself
Change or clean the air foam filter.
Clean or change the spark plug
Change the engine oil
The air foam filter can be cleaned after every 50 hours of use. Air foam filter purifies the air that goes into the generator and is usually located beside the carburettor. It is cleaned by washing the dirty foam in a high flash solvent such as kerosene, then dipping in clean engine oil and squeezing out excess engine oil.
The spark plug should be serviced every 3 months or so. To service a spark plug just to remove it and clean any dirt that is inside of it then put it back. Spark plug ensures the smooth running of the generator. If your generator is experiencing hard starting or is struggling to carry electrical load that it normally does easily before, then one of the first checks to make is that of the spark plug.
Change the engine oil of your generator with a brand new oil of motor quality every month if you use it everyday or every two days. The function of engine oil is to clean its internal parts, give it lubrication and cool it down during use. When the colour of the engine oil has become dark or black then it is due for changing.
Also, watch out for nuts and bolts that may come off the body of the generator during use and fix them back. During normal working conditions, the generator can sometimes experience heavy vibrations which can cause screws, nuts and bolts to loosen over time.
Other types of service such as service of the carburettor or repair of engine parts should be done by qualified personnel.
A series connection of batteries is achieved when the negative terminal of one battery cell is connected to the positive terminal of another battery cell. 2 or more battery cells can be connected this way. An example of application of series connection of batteries is in the use of a touch light. Typically 2 batteries are connected in series for the touch light to come on.
In a series connection of batteries, voltage increases while current stays constant.
For example let’s say 2 battery cells are rated 1.5 V and 1A each and the cells are connected in series. Then the combined voltage for the series connection becomes 1.5V + 1.5V = 3V but the current remains 1A.
Using the previous cell ratings, an electrical appliance that needs 6 volts to come on will require 4 battery cell connection in series
Battery cells connected in parallel.
A parallel connection of batteries is achieved when the positive terminal of one battery cell is connected to the positive terminal of another battery cell. The same is done to the negative terminals of the battery cells.
In a parallel battery connection, voltage stays constant but current increases.
For example let’s say 2 battery cells are rated 1.5V and 1A each. If the batteries are connected in parallel then their combined ratings are 1.5V and (1A +1A) = 2A
Application of series and parallel connection of battery cells
A very good knowledge of series and parallel connection of battery cells enables the development of battery packs with with different voltage ratings and capacities.
Caring for your electrical generating set to make it last longer.I will discuss this topic under 4 subtopics namely;
Purchasing a good generator
Changing the engine oil
Changing the spark plug
Loading the generator
Don’t let it run out of fuel
Purchasing a good generator
If you want your electrical generator to last, then make sure you purchase an original. An original generator that is badly managed will still last up to a year, and if properly managed can be useful for years ( 3 years at least ).
A fake generator will last only a couple of months even if properly maintained. A fake generator is called so because it is made up of low quality materials. It may cost less but it usually won’t be worth it at the end of the day. Don’t rush to purchase a generator, take your time to search, check and scrutinize. If you really can’t differentiate an original from fake, sincerely talk to the dealer to give you an original product with guarantee. Be ready to spend more to obtain an original product, it pays.
Changing the engine oil.
This is the main maintenance secret. If you want your electrical generating set to last then change its engine oil every month with good quality oil( that is if you use it regularly). Never run the generator on low engine oil. Before you start your generator, always check the engine oil level using the dip stick. If it is low, fill it up to the required gauge with good quality oil. Don’t over gauge. The engine oil is the life of your machine, don’t run it on low oil, and low quality oil.
Changing the spark plug
All petrol generators are fitted with a spark plug. The Spark plug makes the engine run smoothly delivering maximum efficiency. Most of the time when the engine will not start it is because the spark plug is faulty. Also when the engine is not running smoothly and quietly, the spark plug is usually the culprit. So if you notice that your electrical generating set won’t start, or starts after several attempts, or does not run smoothly and quietly as before, check and change the spark plug if necessary.
Loading the generator.
Generators are rated based on the electrical loads they can handle. The ratings are clearly stated on the body or packaging of the generator. A generator with a rating of say 2.5 Kva or 2.5 kw means that is the maximum electrical load it can handle safely. From experience don’t load your generator above half of its stated rating. For instance if a generator rating states 3kva, then don’t use it to power electrical appliances adding up to more than 1.5kva. Doing this won’t put much stress on the engine and will make it last longer.
Don’t Let Your generator run out of fuel
Do not form the habit of letting your generator run out of fuel. If you use a diesel generator then, Never let it run out of fuel because you will always need a qualified technician to restart the engine for you anytime it occurs. If you use a petrol engine; you can still restart it when it runs out of fuel but if you form the habit of doing so, the carburetor will damage quickly and soon you will not be able to restart the generator when it occurs again without the help of a technician.
There are 3 major components of a solar electric generating system;
Solar Panels: which produce electrical energy from the sun
Battery: to store electrical energy produced by the solar panels
Inverter: converts direct current produced from the battery or solar panels to alternating current required to power your electrical devices.
Note that there are battery-less solar systems too. If you only need electricity only when the sun is shining then you only need a solar panel and inverter. And if your electrical appliance runs on direct current only, then you only need the appropriate amount of solar panel or panels with a direct current voltage regulator installed.
In advanced countries with 24 hour supply of grid electricity, batteryless solar systems are connected to the grid. The overall goal here is to reduce the cost of grid electricity being paid for by the owner of the solar system. Once the solar panels generate enough electric power for the day, the excess is sold off to the grid. A sophisticated device that calculates the energy produced by the solar system and the excess that is sold off is installed with the system.
Solar Panel Sizing
Solar panels are produced in different power output ratings. There are 10 watts solar panels, 20 watts, 30 watts and so on. A standard solar panel is rated at a power output of around 300 watts. In determining the size and number of solar panels you will need, you will first need to find out your total power consumption requirements.
To know the power consumption of your electrical appliances, check under or back of the appliance.
Once you know the total power requirements of your electrical appliances you can then correctly determine the size and number of solar panels required.
Let’s say the total power consumption of all your electrical appliances is say 3000 watts, then this means you will need ten 300 watts solar panels. Assuming not all your electrical appliances are working at the same time then the panel sizing just calculated above will be adequate. Otherwise you may need to add say one more 300 watts. This is because the solar panels are not 100% efficient.
Suitable Battery and Sizing
Big sized batteries suitable for use with a solar electric system produce a direct current of 12V.
Battery capacity is the key factor here. It is the maximum amount of power the battery can store.
Batteries suitable for the solar system are deep cycle. Deep cycle batteries are designed to discharge to almost it’s full capacity without damage. Say 80 to 90% of total capacity.They look like car batteries. Note that most car batteries are not deep cycle.
There are two major types of battery in the market;
Lead acid battery
Lithium battery
Lead acid batteries are very common and cheap. Even though lead acid batteries can be designed for deep cycle use, it is advisable you don’t discharge more than 50% of its capacity to extend battery life. It is also advisable to use flooded lead acid batteries rather than seal lead acid batteries. They last longer when properly maintained. Lifespan of lead acid battery is between 1.5 to 2 years
Lithium batteries are true deep cycle but are expensive. They can support discharges of over 90% of their capacities without damage. They can also support recharge cycles of between 1000 – 3000 times lasting 3 to 5 years if properly used.
Battery Sizing
Battery capacities are usually expressed as Ah (Ampere hours). To express as Wh ( Watt hours) it should be multiplied by the supplying voltage of the battery which is usually 12V ( V stands for volts). Also note that 1kWh ( kWh stands for Kilowatts hour) = 1000Wh.
For instance, a battery rated 300Ah, and multiplied by 12V gives;
300 × 12= 3600Wh or 3.6kWh.
This means that the fully charged battery can deliver a power of 3.6kW consistently for 1 hour.
Referring to the example on solar panel sizing, recall that we sized for 3000W. Since it is reasonable that all electrical appliances can not all be put on at the same time for 24 hours, we can conclude that on the average, a power of 1500W or 1.5kWh is being utilized every hour. Recall that our calculated battery capacity is 3.6kWh. A little consideration will show that if 3.6kWh is divided by 1.5kW ( which is the average power consumption per hour, it means that a single fully charged 3.6kWh battery will power your electrical appliances for ; (3.6÷1.5= 2.4 hours) 2.4 hours or 2.4h, (h stands for hours). So if you want a 24hour supply you divide 24 hours by 2.4 hours which equals 10. This means you will need ten 3.6kWh capacity batteries.
In truth if you are using lead acid batteries you will need much more.
Since it is not safe to discharge above 50% the rated capacity in order not to damage the battery, then ten batteries will run for 12 hours. That is you need 2 × 10 lead acid batteries to run for 24 hours. But if it’s lithium batteries which can support almost full discharge without damage, then near 24 hours supply is possible with the calculated 10 batteries.
In summary of this section, if it’s lead acid battery, then you will have to double the battery size / number to run for the number of hours it has been designed for. If its lithium battery then increase battery size / number by 10-20 %.
Inverter Sizing
It is better to get a much bigger inverter than what is required. For a 3000W power consumption you can go for a 5000W rated inverter. This will give the inverter much headroom to operate safely. Inverters are prone to overheating when loaded near it’s full capacity.
Backup Generator
Your solar electric system will not be complete without a backup generator. When the solar power and batteries run out. The back up generator can restore power and at the same time charge the batteries for another cycle of use.
Generator Sizing
For the generator to last, it should run at 50% its rated capacity. So let’s say all your household electrical appliances are rated 3000W, then get a backup generator of 6000W.
All electronic appliances comes attached with a power cable for connecting to electricity outlet in your house.The power cable may contain 2 or 3 wires. A power cable with 2 wire colours are in RED and BLUE. A power cable with 3 wires have the colours GREEN, RED and BLUE.
Meaning of the wire colours
The Wire colours have their meanings and It is briefly explained below;
Red colour : Live wire
Brown or Black colour : Live wire
Blue or White colour: Neural wire
Green or Yellow colour: Earth wire
In some places, the live wire is black in colour and the neutral wire is white.
The red or brown wire is “LIVE” as the name implies, electric current flows through this wire. The live wire supplies electric current to the appliance. You should take care when you handle this kind of wire. It can cause an electric shock
The blue wire is “NEUTRAL” . This wire do not give a shock upon touching it or show a red light through a tester. In reality it carries electric current back to the power source. It is the neutral wire that allows the current to alternate. Neutral wire is an integral component of an AC power system.
The green wire is “EARTH” . The purpose of this wire is to remove excess electric charges that might be on the connected appliance and drive them into the earth. It is good practice to earthen electrical appliances to prevent any form of electric shock upon contact. The Earth wire is usually connected to a metal rod driven into the ground.
Some electrical appliance come with just the live and neutral wire. This is Ok. But you are always at a risk of receiving electric shock from contact with the appliance when connected to electricity. This usually happens when the electrical appliance is faulty.
The live wire supplies current to the appliance, the neutral wire carries it back and the earth wire is to serve as protection from electric shock.